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Abstract—Process intensification in microchannels has become one 
of the attractive research focus. Gas-liquid operations like gas 
absorption in microchannels have proven to be highly efficient than 
conventional operations. This work is focused on hydrodynamic 
studies (pressure drop and flow patterns) in rectangular 
microchannels for the nitrogen-water system at 27 Ԩ temperature 
and 1 atmospheric pressure. Y-junction(45º), Cross-T-junction(90º), 
and T-junction (180º), rectangular microchannels with the following 
dimension, (LxWxH) (45 mm x 0.5 mm x 0.75 mm) were used in this 
work. The effect of channel junction on the pressure drop was 
evaluated. The highest pressure drop was recorded in Cross-T-
junction than the Y- junction channel and lowest in the T- junction 
microchannel. The pressure drop was in the range 0.6 to 8.2 kPa, 1.5 
to 8.6 kPa and 0.4 to 8 kPa for Y, Cross-T and T Junction 
respectively. Finite element analysis (FEA) was conducted for the 
pressure drop calibration. Simulation and the experimental results 
were fairly in agreement with each other. Slug flow, slug-annular 
flow, churn flow and annular was observed in the microchannel with 
different junctions.  
 
Keywords: Microchannel; Pressure drop; Hydrodynamic; Two-
Phase flow; Nitrogen; Water; Rectangular cross-section; Y-junction; 
Cross-T-Junction; T-Junction. 

1. INTRODUCTION 
Gas-liquid two-phase systems are encountered in a gas-
absorption process. They have several applications like 
separation of pollutants COx, SOx, NOx, from industrial 
exhaust gases, dehydration of natural gas using liquid solvents 
and more. Conventionally equipment like stirred tank [1-2], 
mixer-settler [3-4], tray columns [5-7], rotating disk [8], 
pulsed [8], packed tower [9-10], spray tower [11-12], columns 
are used. This equipment has many drawbacks such as less 
efficiency, large size, less precision control, economic, etc. 
Process intensification in chemical industries has become the 
central focus of research. The aim of this intensification step is 
to reduce the cost of operation, equipment, by making changes 
in the processes, equipment design, utilizing the smaller 
equipment and energy-efficient ones. One of the techniques of 
achieving process intensification is employing microchannels. 
Microchannels offer high specific surface area, high heat, and 

mass transfer rates, precise control over the bubble and the 
slug size. They are suitable for handling hazardous and 
expensive chemicals as they use very less quantity of reagents.  

A significant number of reports are found in the literature 
related to gas-liquid systems. The surface area of the slugs or 
bubbles, pressure drop and flow maps as a function of 
Capillary and Weber numbers are part of the hydrodynamic 
study [13-17]. Among them, hydrodynamics (flow regimes 
and pressure drop) estimation is important for evaluating the 
efficiency and the energy requirement of the process. 

Few studies reported the hydrodynamics of flow and pressure 
drop of gas-liquid systems in microchannels [18-22]. Most of 
the two-phase flow was conducted in circular cross-section 
microchannels, [18, 23-24] while rectangular, square, 
triangular and trapezoidal shape microchannels are also used. 
[25-26]. Triplett et al. [27] reported different flow regimes, 
namely bubble, slug, churn and annular flows in a 1 mm 
diameter pipe. Kawahara et al. 2002, used a 100 μm hydraulic 
diameter circular channel and gas-liquid flow patterns were 
determined at the range superficial velocities of 0.1–60 m/s for 
gas, and 0.02–4 m/s for liquid, and observed slug, bubble, and 
annular flow. Typical flow patterns were reported by Kreutzer 
et al. 2005, such as liquid ring flow, stratified flow, fluid or 
gas lumped flow. Chung and Kawaji, 2004, conducted a 
hydrodynamic study in a square and circular channel of size 
100 micrometers. They reported the flow map and concluded 
that the void fraction of the phases was independent of the 
shape of the channel. Choi et al. 2011, investigated the effect 
of aspect ratio on flow patterns and void fraction, in three 
different microchannels having three hydraulic diameters. 
They observed that the void fraction is dependent on the 
aspect ratio. In 2009, Yue et al was studied pressure drop in 
the rectangular microchannel, and the divided flow model was 
modified for 200 to 667 μm rectangular channels. 

It has been identified that most experimental studies were 
conducted to identify the effect of shape (triangular, 
rectangular and circular), dimension, flow rates on flow 
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